Атф и адф что это?

Разница между АДФ и АТФ

АТФ и АДФ являются молекулами, содержащими большое количество запасенной химической энергии. Аденозиновая группа АДФ и АТФ состоит из аденина, хотя они также содержат фосфатные группы. Химически АТФ

Содержание:

  • Основная разница — АДФ против АТФ
  • Что такое трифосфат аденозина (АТФ)
  • Что такое аденозин ди фосфат (АДФ)
  • Разница между АДФ и АТФ

Основная разница — АДФ против АТФ

АТФ и АДФ являются молекулами, содержащими большое количество запасенной химической энергии. Аденозиновая группа АДФ и АТФ состоит из аденина, хотя они также содержат фосфатные группы. Химически АТФ означает Аденозин трифосфат и ADP обозначает Аденозин ди фосфат. Третий фосфат АТФ присоединен к двум другим фосфатные группы с очень высокой энергетической связью, и большое количество энергии выделяется, когда эта фосфатная связь разрывается. АДФ приводит к удалению третьей фосфатной группы из АТФ. Это ключевое различие между АТФ и АДФ, Однако по сравнению с АТФ молекула АДФ обладает гораздо меньшей химической энергией, поскольку связь между двумя последними фосфатами при высокой энергии была нарушена. Основываясь на молекулярной структуре АТФ и АДФ, они имеют свои собственные АДФ. В этой статье давайте рассмотрим, в чем различия между ATP и ADP.

Что такое трифосфат аденозина (АТФ)

Аденозинтрифосфат (АТФ) используется биологическими существами в качестве кофермента внутриклеточной химической передачи энергии в клетках для метаболизма. Другими словами, это основная молекула энергоносителя, используемая в живых существах. АТФ образуется в результате фотофосфорилирования, аэробного дыхания и ферментации в биологических системах, что способствует накоплению фосфатной группы в молекуле АДФ. Он состоит из аденозина, который состоит из аденинового кольца и рибозного сахара и трех фосфатных групп, также известных как трифосфат. Биосинтез АДФ в результате,

Глюкоза + 2NAD + + 2 Pi + 2 ADP = 2 пируват + 2 ATP + 2 NADH + 2 H2О

Глюкоза = 2CH3СН (ОН) СООН + 2 АТФ

Что такое аденозин ди фосфат (АДФ)

ADP состоит из аденозина, который состоит из аденинового кольца и рибозного сахара и двух фосфатных групп, также известных как дифосфат. Это жизненно важно для потока энергии в биологических системах. Он генерируется в результате дефосфорилирования молекулы АТФ ферментами, известными как АТФазы. Расщепление фосфатной группы из АТФ приводит к выделению энергии для метаболических реакций. Название ADP для ИЮПАК представляет собой [(2R, 3S, 4R, 5R) -5- (6-аминопурин-9-ил) -3,4-дигидроксиоксолан-2-ил] метилфосфоногидрофосфат. ADP также известен как 5′-дифосфат аденозина.

Разница между АДФ и АТФ

АТФ и АДФ могут иметь существенно разные физические и функциональные характеристики. Их можно разделить на следующие подгруппы,

Сокращение

ATP: Аденозин трифосфат

АДФ: Аденозин ди фосфат

Молекулярная структура

ATP:АТФ состоит из аденозина (адениновое кольцо и рибозный сахар) и трех фосфатных групп (трифосфат).

АДФ: АДФ состоит из аденозина (адениновое кольцо и рибозный сахар) и двух фосфатных групп.

Количество фосфатных групп

ATP: АТФ имеет три фосфатные группы.

АДФ: ADP имеет две фосфатные группы.

Химическая формула

Молярная масса

ATP: Молярная масса составляет 507,18 г / моль.

АДФ: Молярная масса составляет 427.201 г / моль.

плотность

ATP: Плотность АТФ составляет 1,04 г / см. 3.

АДФ: Плотность ADP составляет 2,49 г / мл.

Энергетическое состояние молекулы

ATP: АТФ является высокоэнергетической молекулой по сравнению с АДФ.

АДФ: АДФ представляет собой низкоэнергетическую молекулу по сравнению с АТФ.

Механизм высвобождения энергии

ATP: АТФ + H2O → АДФ + Pi ΔG˚ = −30,5 кДж / моль (−7,3 ккал / моль)

АДФ: ADP + H2O → AMP + PPi

Функции в биологической системе

ATP:

  • Метаболизм в клетках
  • Аминокислотная активация
  • Синтез макромолекул, таких как ДНК, РНК и белок
  • Активный транспорт молекул
  • Поддержание клеточной структуры
  • Способствовать клеточной сигнализации

АДФ:

  • Катаболические пути, такие как гликолиз, цикл лимонной кислоты и окислительное фосфорилирование
  • Активация тромбоцитов крови
  • Играть роль в митохондриальном комплексе АТФ-синтазы

В заключение, молекулы АТФ и АДФ являются типами «универсального источника энергии», и ключевым отличием между ними является количество фосфатной группы и содержание энергии. В результате они могут иметь существенно разные физические свойства и разные биохимические роли в организме человека. Как АТФ, так и АДФ участвуют в важных биохимических реакциях в организме человека, и поэтому они рассматриваются как жизненно важные биологические молекулы.

Voet D, Voet JG (2004). Биохимия 1 (3-е изд.). Хобокен, Нью-Джерси: Wiley. ISBN 978-0-471-19350-0.

Ronnett G, Kim E, Landree L, Tu Y (2005). Метаболизм жирных кислот в качестве мишени для лечения ожирения. Physiol Behav 85 (1): 25–35.

Беленький П., Боган К.Л., Бреннер С. (январь 2007). НАД + обмен веществ в норме и патологии. Тенденции биохимии. Sci. 32 (1): 12–9.

Дженсен Т.Е., Рихтер Е.А. (2012). Регуляция метаболизма глюкозы и гликогена во время и после тренировок. J. Physiol. (Лонд.) 590 (Часть 5): 1069–76.

Ресетар А.М., Чалович Ю.М. (1995). Аденозин 5 ‘- (гамма-тиотрифосфат): аналог АТФ, который следует использовать с осторожностью в исследованиях сокращения мышц. биохимия 34 (49): 16039–45.

«Аденозин-дифосфат-3D-шарики» Джинто (доклад) — собственная работа Это химическое изображение было создано с помощью Discovery Studio Visualizer. (CC0) через

Атф и адф что это?

На рисунке представлены два способа изображения структуры АТФ. Аденозинмонофосфат (АМФ), аденозиндифосфат (АДФ) и аденозинтрифосфат (АТФ) относятся к классу соединений, называемых нуклеогидами. Молекула нук-леотида состоит из пятиуглеродного сахара, азотистого основания и фосфорной кислоты. В молекуле АМФ сахар представлен рибо-зой, а основание — аденином. В молекуле АДФ две фосфатные группы, а в молекуле АТФ — три.

Значение АТФ

При расщеплении АТФ на АДФ и неорганический фосфат (Фн) высвобождается энергия:

Реакция идет с поглощением воды, т. е. представляет собой гидролиз (в нашей статье мы много раз встречались с этим весьма распространенным типом биохимических реакций). Отщепившаяся от АТФ третья фосфатная группа остается в клетке в виде неорганического фосфата (Фн). Выход свободной энергии при этой реакции составляет 30,6 кДж на 1 моль АТФ.

Из АДФ и фосфата может быть вновь синтезирован АТФ, но для этого требуется затратить 30,6 кДж энергии на 1 моль вновь образованного АТФ.

В этой реакции, называемой реакцией конденсации, вода выделяется. Присоединение фосфата к АДФ называется реакцией фосфорилирования. Оба приведенных выше уравнения можно объединить:

Катализирует данную обратимую реакцию фермент, называемый АТФазой.

Всем клеткам, как уже было сказано, для выполнения их работы необходима энергия и для всех клеток любого организма источником этой энергии служит АТФ. Поэтому АТФ называют «универсальным носителем энергии» или «энергетической валютой» клеток. Подходящей аналогией служат электрические батарейки. Вспомните, для чего только мы их не используем. Мы можем получать с их помощью в одном случае свет, в другом звук, иногда механическое движение, а иногда нам нужна от них собственно электрическая энергия. Удобство батареек в том, что один и тот же источник энергии — батарейку — мы можем использовать для самых разных целей в зависимости от того, куда мы ее поместим. Эту же роль играет в клетках АТФ. Он поставляет энергию для таких различных процессов, как мышечное сокращение, передача нервных импульсов, активный транспорт веществ или синтез белков, и для всех прочих видов клеточной активности. Для этого он должен быть просто «подключен» к соответствующей части аппарата клетки.

Читайте также  Bcaa 2 1 1 что это такое?

Аналогию можно продолжить. Батарейки требуется сначала изготовить, а некоторые из них (аккумуляторные) так же, как и АТФ, можно перезарядить. При изготовлении батареек на фабрике в них должно быть заложено (и тем самым израсходовано фабрикой) определенное количество энергии. Для синтеза АТФ тоже требуется энергия; источником ее служит окисление органических веществ в процессе дыхания. Поскольку для фосфорилирования АДФ энергия высвобождается в процессе окисления, такое фосфорилирование называют окислительным. При фотосинтезе АТФ образуется за счет световой энергии. Этот процесс называют фотофос-форилированием (см. разд. 7.6.2). Есть в клетке и «фабрики», производящие большую часть АТФ. Это митохондрии; в них размешаются химические «сборочные линии», на которых образуется АТФ в процессе аэробного дыхания. Наконец, в клетке происходит и перезарядка разрядившихся «аккумуляторов»: после того как АТФ, высвободив заключенную в нем энергию, превратится в АДФ и Фн, он может быть вновь быстро синтезирован из АДФ и Фн за счет энергии, полученной в процессе дыхания от окисления новой порции органических веществ.

Количество АТФ в клетке в любой данный момент очень невелико. Поэтому в АТФ следует видеть только носителя энергии, а не ее депо. Для длительного хранения энергии служат такие вещества, как жиры или гликоген. Клетки весьма чувствительны к уровню АТФ. Как только скорость его использования возрастает, одновременно возрастает и скорость процесса дыхания, поддерживающего этот уровень.

Роль АТФ в качестве связующего звена между клеточным дыханием и процессами, идущими с потреблением энергии, видна из рисунка Схема эта выглядит простой, но она иллюстрирует очень важную закономерность.

Можно, таким образом, сказать, что в целом функция дыхания заключается в том, чтобы вырабатывать АТФ.

Суммируем вкратце сказанное выше.
1. Для синтеза АТФ из АДФ и неорганического фосфата требуется 30,6 кДж энергии на 1 моль АТФ.
2. АТФ присутствует во всех живых клетках и является, следовательно, универсальным носителем энергии. Другие носители энергии не используются. Это упрощает дело — необходимый клеточный аппарат может быть более простым и работать более эффективно и экономно.
3. АТФ легко доставляет энергию в любую часть клетки к любому нуждающемуся в энергии процессу.
4. АТФ быстро высвобождает энергию. Для этого требуется всего лишь одна реакция — гидролиз.
5. Скорость воспроизводства АТФ из АДФ и неорганического фосфата (скорость процесса дыхания) легко регулируется в соответствии с потребностями.
6. АТФ синтезируется во время дыхания за счет химической энергии, высвобождаемой при окислении таких органических веществ, как глюкоза, и во время фотосинтеза — за счет солнечной энергии. Образование АТФ из АДФ и неорганического фосфата называют реакцией фос-форилирования. Если энергию для фос-форилирования поставляет окисление, то говорят об окислительном фосфорилиро-вании (этот процесс протекает при дыхании), если же для фосфорилирования используется световая энергия, то процесс называют фотофосфорилированием (это имеет место при фотосинтезе).

АТФ в бодибилдинге

Содержание

  • 1 АТФ — Аденозин Три-Фосфорная кислота
    • 1.1 Структура АТФ
  • 2 Системы АТФ
    • 2.1 Фосфагенная система
    • 2.2 Система гликогена и молочной кислоты
    • 2.3 Аэробное дыхание
  • 3 Читайте также

АТФ — Аденозин Три-Фосфорная кислота [ править | править код ]

АТФ (аденозин трифосфат: аденин, связанный с тремя фосфатными группами) — молекула, которая служит источником энергии для всех процессов в организме, в том числе для движения. Сокращение мышечного волокна происходит при одновременном расщеплении молекулы АТФ, в результате чего выделяется энергия, которая идёт на осуществление сокращения. В организме АТФ синтезируется из инозина.

АТФ должна пройти через несколько ступеней, чтобы дать нам энергию. Сначала при помощи специального коэнзима отделяется один из трёх фосфатов (каждый из которых даёт десять калорий), высвобождается энергия и получается аденозин дифосфат (АДФ). Если энергии требуется больше, то отделяется следующий фосфат, формируя аденозин монофосфат (АМФ). Главным источником для производства АТФ служит глюкоза, которая в клетке инициально расщепляется на пируват и цитозол.

Во время отдыха происходит обратная реакция – при помощи АДФ, фосфагена и гликогена фосфатная группа вновь присоединяется к молекуле, формируя АТФ. Для этих целей из запасов гликогена берётся глюкоза. Вновь созданный АТФ готов к следующему использованию. В сущности АТФ работает как молекулярная батарея, сохраняя энергию, когда она не нужна, и высвобождая в случае необходимости.

Структура АТФ [ править | править код ]

Молекула АТФ состоит из трёх компонентов:

1. Рибоза (тот же самый пятиуглеродный сахар, что формирует основу ДНК)
2. Аденин (соединённые атомы углерода и азота)
3. Трифосфат

Молекула рибозы располагается в центре молекулы АТФ, край которой служит базой для аденозина. Цепочка из трёх фосфатов располагается с другой стороны молекулы рибозы. АТФ насыщает длинные, тонкие волокна, содержащие протеин, называемый миозином, который формирует основу наших мышечных клеток.

Системы АТФ [ править | править код ]

Запасов АТФ достаточно только на первые 2-3 секунды двигательной активности, однако мышцы могут работать только при наличии АТФ. Для этого существуют специальные системы, которые постоянно синтезируют новые молекулы АТФ, они включаются в зависимости от продолжительности нагрузки (см. рисунок). Это три основные биохимические системы:

1. Фосфагенная система (Креатин-фосфат)
2. Система гликогена и молочной кислоты
3. Аэробное дыхание

Фосфагенная система [ править | править код ]

Когда мышцам предстоит короткая, но интенсивная активность (приблизительно 8-10 секунд), используется фосфагенная система – АДФ соединяется с креатина фосфатом. Фосфагенная система обеспечивает постоянную циркуляцию небольшого количества АТФ в наших мышечных клетках. Мышечные клетки также содержат высокоэнергетический фосфат – фосфат креатина, который используется для восстановления уровня АТФ после кратковременной, высокоинтенсивной работы. Энзим креатин киназа отнимает фосфатную группу у креатина фосфата и быстро передаёт её АДФ для формирования АТФ. Итак, мышечная клетка превращает АТФ в АДФ, а фосфаген быстро восстанавливает АДФ до АТФ. Уровень креатина фосфата начинает снижаться уже через 10 секунд высокоинтенсивной активности. Пример использования фосфагенной системы энергоснабжения – это спринт на 100 метров.

Система гликогена и молочной кислоты [ править | править код ]

Система гликогена и молочной кислоты снабжает организм энергией медленнее, чем фосфагенная система, и предоставляет достаточно АТФ примерно для 90 секунд высокоинтенсивной активности. В ходе процесса из глюкозы мышечных клеток в результате анаэробного метаболизма происходит формирование молочной кислоты.

Учитывая тот факт, что в анаэробном состоянии организм не использует кислород, эта система даёт кратковременную энергию без активации кардио-респираторной системы точно так же, как и аэробная система, но с экономией времени. Более того, когда в анаэробном режиме мышцы работают быстро, они очень мощно сокращаются, перекрывая поступление кислорода, так как сосуды оказываются сжатыми. Эту систему ещё можно назвать анаэробно-респираторной, и хорошим примером работы организма в этом режиме послужит 400-метровый спринт. Обычно продолжать работать таким образом атлетам не даёт мышечная болезненность, возникающая в результате накопления молочной кислоты в тканях.

Аэробное дыхание [ править | править код ]

Если упражнения длятся более двух минут, в работу включается аэробная система, и мышцы получают АТФ вначале из углеводов, потом из жиров и наконец из аминокислот (протеинов). Протеин используется для получения энергии в основном в условиях голода (диеты в некоторых случаях). При аэробном дыхании производство АТФ проходит наиболее медленно, но энергии получается достаточно, чтобы поддерживать физическую активность на протяжении нескольких часов. Это происходит, потому что глюкоза распадается на диоксид углерода и воду беспрепятственно, не испытывая противодействия со стороны, например, молочной кислоты, как в случае анаэробной работы.

Читайте также  Сколько клетчатки нужно употреблять в день?

Агрегация тромбоцитов с АДФ (4 концентрации с аденозиндифосфатом) (венозная кровь) в Москве

Исследование предназначено для функциональной оценки одного из звеньев процесса свертывания крови – агрегации, или склеивания, тромбоцитов. В качестве биохимического индуктора агрегации в анализе используется аденозиндифосфат, или АДФ (в четырёх концентрациях).

  • Об исследовании Обзор
  • Как подготовиться? Подготовка
  • Расшифровка Результат
  • Приём, исследование биоматериала
  • Показания к назначению
  • Описание

Приём и исследование биоматериала

  • Можно сдать в отделении Гемотест
  • Можно сдать анализ дома

Когда нужно сдавать анализ Агрегация тромбоцитов с АДФ (4 концентрации с аденозиндифосфатом)?

  • Перед назначением препаратов, оказывающих влияние на систему свёртывания.
  • Дифференциальная диагностика заболеваний, сопровождающихся патологическими кровотечениями.
  • В рамках комплексной оценки тромбоцитарного звена гемостаза у пациентов перед (обширной) операцией, а также у беременных женщин с высоким риском развития акушерских осложнений.
  • Определение резистентности к лекарственным средствам из группы антиагрегантов.
  • Выявление наследственных и приобретенных тромбоцитопатий.

Подробное описание исследования

Внимание! Исследование доступно в отделениях:

г. Москва, Мичуринский проспект, 7к1,

г. Москва, Ломоносовский пр-т, д.23 ,

г. Москва, Хамовнический Вал ул, дом 14,

г. Москва, Профсоюзная ул, дом 104,

г. Москва, Электрозаводская ул, дом 37/4, стр. 7,

г. Москва, Снежная ул, дом 17, корпус 1,

г. Москва, Красного Маяка ул, дом 1, корпус 1, офис 109,

г.Москва, Рождественский б-р, д. 21с2,

г.Москва, ул. Новогиреевская 24, корп.1,

г.Москва, 11-я улица Текстильщиков, д. 11,

г.Москва, ул. Ангарская, д. 28 к.2,

г.Москва, ул. Декабристов, д. 21,

г.Москва, ул. Москворечье, д. 4к6,

г.Москва, ул. Ладожская д. 8,

г.Мытищи, ул. Веры Волошиной, д. 46,

г.Люберцы, Октябрьский пр-т, д. 183.

Сдать можно только по предварительной записи. Запись осуществляется по многоканальному телефону: 8 800 550 13 13 (звонок по России беплатный).

Система гемостаза, или система свёртывания крови, выполняет две ключевых функции:

  1. сохраняет кровь, находящуюся в сердечно-сосудистой системе, в жидком состоянии;
  2. мгновенно реагирует на повреждения сосудов, формируя тромбы в процессе свёртывания, чем защищает организм от кровопотери.

К основным элементам системы свёртывания относят обширную группу белков и небелковых факторов свёртывания. Одним из важнейших элементов системы гемостаза являются тромбоциты, или кровяные пластины, – это видоизменённые клетки крови. Их основная функция – это участие в образовании тромба.

В нормальных физиологических условиях тромбоциты циркулируют в кровяном русле в неактивном состоянии. При нарушении целостности сосудистой стенки и взаимодействии тромбоцитов с высвободившимися биохимическими веществами, запускается процесс активации тромбоцитов и свертывания крови.

К группе основных активаторов (индукторов) кровяных пластинок можно отнести следующие вещества:

  • аденозиндифосфат (АДФ);
  • адреналин;
  • коллаген;
  • тромбин (фактор свертывания II)
  • фактор фон Виллебранда
  • ристомицин (ристоцетин), который используется в лабораторных условиях.

Данное исследование направлено на проведение агрегации тромбоцитов при помощи АДФ — чрезвычайно важной молекулы-индуктора, которая активирует тромбоциты в зоне повреждения кровеносного сосуда.

Активированные тромбоциты участвуют в процессе первичного и вторичного гемостаза. Оба процесса являются элементами защиты организма от кровотечения. Первый процесс обычно протекает в сосудах малого калибра, второй – в крупных сосудах.

Первичный гемостаз основан на прикреплении кровяных пластинок к коллагену поврежденного сосуда и склеивании (агрегации) тромбоцитов между собой. В результате этого процесса образуется так называемая первичная «тромбоцитарная пробка». Во вторичном гемостазе происходит образование кровяного сгустка при помощи последовательной активации белков-факторов свертывания. Тромбоциты поддерживают этот биохимический каскад реакций и входят в состав кровяного сгустка, который прочно закрывает просвет поврежденного сосуда и препятствует дальнейшему кровотечению. АДФ индуцирует как первичный, так и вторичный гемостаз.

При различных заболеваниях процесс активации тромбоцитов может нарушаться. При увеличении степени агрегации кровяных пластинок повышается риск образования патологических кровяных сгустков (тромбов). Уменьшение степени агрегации тромбоцитов ассоциировано с повышением риска кровотечений.

В клинической практике исследование агрегации тромбоцитов с АДФ используется в рамках комплексной диагностики функциональной неполноценности кровяных пластинок (тромбоцитопатии) у пациентов с выраженными кровотечениями. Также данный лабораторный тест может проводиться у лиц со склонностью к тромбообразованию (например, пациенты с сердечно-сосудистыми заболеваниями).

Тромбоцитопатии могут быть врожденными или приобретенными. Последний тип функциональной неполноценности тромбоцитов встречается гораздо чаще и может развиться на фоне следующих причин:

  • Использование клопидогрела; ацетилсалициловой кислоты и других антиагрегантов (препаратов, препятствующих склеиванию тромбоцитов).
  • Хроническая почечная недостаточность.
  • Онкологические заболевания кроветворной и лимфатической системы.
  • Злоупотребление алкоголем.
  • На фоне приема ряда лекарственных средств из группы бета-блокаторов, блокаторов кальциевых каналов, ксантинов.

Данный лабораторный анализ рекомендуется сдавать при наличии показаний от лечащего врача.

Атф и адф что это?

124-125

Нуклеотидный кофермент аденозинтрифосфат [ АТФ (АТР)] является наиболее важной формой сохранения химической энергии в клетках. Расщепление АТФ — высоко экзоэргическая реакция. Химическая энергия гидролиза АТФ (ΔG, см. с. 22) может использоваться для сопряжения (см. с. 126) с эндоэргическими процессами, такими, как биосинтез, движение и транспорт. Другие нуклеозидтрифосфатные коферменты (ГТФ, ЦТФ и УТФ), химически похожие на АТФ, выполняют в метаболических процессах иные функции (см. с. 112).

А. АТФ: структура

В АТФ цепочка из трех фосфатных остатков связана с 5′-OH-группой аденозина (см. с. 86). Фосфатные группы обозначаются как α, β и γ. Рибоза связана с α-фосфатом фосфоэфирной связью. Три фосфатных остатка соединены между собой менее устойчивыми фосфоангидридными связями . При физиологических значениях рН АТФ несет четыре отрицательных заряда. Собственно действующим коферментом является комплекс АТФ с ионом Mg 2+ , координационно связанным с α- и β-фосфатом (Mg 2+ ּ АТФ 4- , на рисунке не показан). Для простоты чаще всего говорят только об АТФ.

Б. Фосфоангидридные связи

Показанная на схеме А формула с изображением фосфатных остатков с простыми и двойными связями не совсем точно отражает распределение зарядов: в АТФ атомы кислорода всех трех фосфатных остатков несут примерно одинаковый отрицательный заряд, в то время как атомы фосфора заряжены положительно. Одной из причин относительной нестабильности фосфоангидридных связей является сильное отталкивание отрицательно заряженных атомов кислорода , которое ослабевает при гидролитическом отщеплении концевой фосфатной группы. Поэтому такие реакции являются высоко экзоэргическими. Кроме того, при гидролизе АТФ возникает свободный фосфат-анион, который лучше гидратирован и более эффективно стабилизирован за счет сопряжения, чем соответствующий остаток в АТФ. Это также способствует высоко экзоэргическому характеру гидролиза АТФ.

В. Свободная энергия гидролиза высокоэнергетических связей

Изменение свободной энергии ΔG o’ (см. с. 16) гидролиза фосфоангидридных связей в АТФ при рН 7 в стандартных условиях составляет от -30 до -35 кДж/моль. Независимо от того, какая из ангидридных связей АТФ при этом расщепляется, величина ΔG o’ остается практически постоянной ( 1-3 ). Даже расщепление пирофосфата ( 4 ) дает в итоге более -30 кДж/моль, в то время как расщепление сложноэфирной связи между рибозой и фосфатом высвобождает только -9 кДж/моль ( 5 ).

В клетке действительное изменение свободной энергии при гидролизе АТФ ΔG’ еще гораздо выше, так как концентрации АТФ, АДФ и неорганического фосфата (Р i ) существенно более низки, чем в стандартных условиях, а АТФ присутствует в избытке по сравнению с АДФ (см. с. 24). На величину ΔG’ влияют также величина рН и концентрация ионов Mg 2+ . Предположительно в физиологических условиях энергия гидролиза АТФ до АДФ и неорганического фосфата равна примерно -50 кДж/моль.

Читайте также  Нарушение углеводного обмена что это?

Немногие соединения содержат связи с энергией гидролиза, достаточной, чтобы за счет энергетического сопряжения обеспечить синтез АТФ из АДФ и Р i ( субстратное фосфорилирование , см. с. 152). К таким молекулам с высоким потенциалом переноса групп (см. с. 24) принадлежат фосфоенолпируват ( 6 ) и 1,3-дифосфоглицерат ( 7 ). Оба соединения являются промежуточными продуктами гликолиза (см. с. 152). Также «богаты энергией» ацильные производные кофермента А ( 8 ), такие, как сукцинил-КоА, гидролиз которого до сукцината сопряжен в цитратном цикле с синтезом ГТФ (см. с. 138). Другой богатой энергией фосфатной связью обладает креатинфосфат , с помощью которого в мышце при необходимости может регенерироваться АТФ (см. с. 328).